monotone

®* Monotone is: (P

&

, monotone
— A version control system

—1n C++

- ~20,000 executable LOC

— fully supported on Windows, OS X, Unix
— fully internationalized

* Monotone has:
— Atomic commits

— Rename support (including directories)
— Full merge support

What makes using a VCS frustrating?

What makes using a VCS frustrating?

* Unpredictability
* Getting bossed around by the system
® Data loss

What makes using a VCS frustrating?

* Not knowing what's going on around
you

* Getting blocked on someone else's
build breakage

* Not being able to find things

So we want...

®* Understandable model of how the
VCS views the world

* Freedom of movement 1n that world
* Reliability

How the VCS views the world

How the VCS views the world

Tree 1

How the VCS views the world

Tree 1
Tree 2

How the VCS views the world

Tree 1

\
Tree 2

How the VCS views the world

Tree 1

\
Tree 2

= Tree 3

How the VCS views the world

Tree 1

\
Tree 2

= Tree 3

<~ ™\

Tree 4 Tree 5

How the VCS views the world

Tree 1

\
Tree 2

= Tree 3

<~ ™\

Tree 4 Tree 5

N

Tree 6

Robustness

Robustness

* Redundancy

Robustness

* Redundancy
* Redundancy

Robustness

* Redundancy
* Redundancy
* Redundancy

But distributed systems are hard

* Stable public formats?

* Distributed data structures?

* Unique branch heads?

®* Tracking synchronization state?

But distributed systems are hard

* Stable public formats?

* Distributed data structures?

®* Unique branch heads?

®* Tracking synchronization state?

Stable public formats

®* Network formats never want to
change

Stable public formats

®* Network formats never want to
change

* Storage formats always want to
change

Stable public formats

®* Network formats never want to
change

* Storage formats always want to
change

—- Decouple them

Stable public formats

* Side-effects:

®* Public formats optimized entirely for
accurately representing domain

* Anything monotone knows can be pulled
out in a simple, documented, stable textual
formats

But distributed systems are hard

* Stable public formats?

* Distributed data structures?

®* Unique branch heads?

®* Tracking synchronization state?

Distributed data structures

* “Pointers” require globally unique
1ds, which might turn out not to be so
unique

* State may become inconsistent
between clones

* Corrupt state can spread and poison
the network

Distributed data structures

* “Pointers” require globally unique
1ds, which might turn out not to be so
unique

* State may become inconsistent
between clones

* Corrupt state can spread and poison
the network

® Malicious users

Distributed data structures

* “Pointers” require globally unique
1ds, which might turn out not to be so

unique Use hashes

* State may become inconsistent
between clones

* Corrupt state can spread and poison
the network

® Malicious users

Distributed data structures

* “Pointers” require globally unique
1ds, which might turn out not to be so

unique Use hashes

* State may become inconsistent
between clones Use hashes

* Corrupt state can spread and poison
the network

® Malicious users

Data formats: manifest

format version “1”

dir aan
file “AUTHORS”
content [53ba0a32a8d3d257787d12f2e37b8c1329¢c664b4]

file “configure”
content [c7T70f0Ob3353al12bcf84a271f491e9cacab499c5f]

attr “mtn:execute” “true”

| 144

dir “src

file “src/main.c”
content [cbd89a231305al1e00895e53403656¢c77c6337bfe]

Data formats: revision

format version “1”
new manifest [8bcb3f8761lab6/ac3a59abf89bd/8801ff08a4d05]

old revision [32cc8671c7ab40b7152d865dba589952635918d1]
add dir “src/awesomeness”
patch "AUTHORS"

from [071db1la513¢c3d68bc0c2b025399688549f0afob7/]
to [43e4feb813375938h4382e1356af36b5e0ed59e6]

Hashes as pointers

* Side-effects:

— Every revision id 1s a complete history
checksum

Distributed data structures

* “Pointers” require globally unique
1ds, which might turn out not to be so

unique Use hashes

* State may become inconsistent
between clones Use hashes

* Corrupt state can spread and poison
the network

® Malicious users

Handling corrupt state

Larry McVoy:
“BK 1s a complicated system, there are >10,000
replicas of the BK database holding Linux
floating around. If a problem starts moving
through those there 1s no way to fix them all by
hand. This happened once betore, a user tweaked
the ChangeSet file, and it costs $35,000 plus a
custom release to fix 1t.”

Detecting corrupt state

* Side-effects:

— Every monotone operation 1s exhaustively
self-checking

* (And of course we optimize this too)

— If monotone reports success, you can
count on that

But distributed systems are hard

* Stable public formats?

* Distributed data structures?

* Unique branch heads?

®* Tracking synchronization state?

Unique branch heads

* Two options:

— Make branches a local concept

Unique branch heads

* Two options:

— Make branches a local concept

® Hard to know what branches exist
® Hard to find branches that do exist
®* Extra friction to collaboration

Unique branch heads

* Two options:

— Make branches a local concept

® Hard to know what branches exist

® Hard to find branches that do exist

* Extra friction to collaboration
— Allow divergence 1n branches

Unique branch heads

* Two options:

— Make branches a local concept

® Hard to know what branches exist

® Hard to find branches that do exist

* Extra friction to collaboration
— Allow divergence 1n branches

Branches

®* New concept: “certs”

- Signed key/value pairs attached to
commits

— A branch 1s “all commits that have a
certain branch=<something> cert”

Branches

* Side-effects:

— This actually makes “branch” a more
meaningtul concept

— Crypto makes everything auditable
—commit always succeeds
— push/pull/sync always succeed

* Side-

Branches

effects:

— You have an arbitrary extension
mechanism for interesting workflow
management

— Possible certs:
® tags

66
*t

66
*t

his revision 1s ready for review”
his revision has passed review”

66y
°t

his revision passes automated tests”

* you tell me...

But distributed systems are hard

* Stable public formats?

* Distributed data structures?

®* Unique branch heads?

®* Tracking synchronization state?

Tracking synchronization state

* Need to be able to send only local
changes

®* Which requires keeping track of
what those local changes are...

®* Which 1s more state that can
become corrupt

Tracking synchronization state

* Need to be able to send only local
changes

\hich requires keeping trgciet
what tfreseJocal chaeeTs are...

®* Which 15#07¢ statt
NgedIne corrupt

Qat can

Tracking synchronization state

* Need to be able to send only local
changes

* Determine what changed on the fly,
from scratch, at every sync

Tracking synchronization state

071db1a513¢c3d68bcOc2b025399688549f0af6b7
22ea2b7a70f2e65d3bc70b51f78785138d052a994
43e4teb813375938b4382e1356af36b5e0ed59e6
a/516319a3afdbbb8cl719beca72290acad44554
a0ba013fbf8fcdf7ba399d671d1c28c1827d00af

Tracking synchronization state

071d...
22ea. ..
43e4. ..

a/bl...

alba. ..

Tracking synchronization state

a“un

Tracking synchronization state

* Arbitrary set synchronization
* Pipelining friendly

* O(d log n) bytes

®*log(n)/2 round trips

—where d = size of the difference
—n = total size of the sets

Tracking synchronization state

* Side-effects

— Synchronization 1s always fast, and
always accurate

—You never have to remember what needs
pushing; monotone will notice 1f you
forget

Distributed systems are hard

* But 1f you design a VCS with:
— Simple representations =
- Reliability
- Security o
— Comfortable free workflow monotone
® Then distributed-ness 1s free!

— And necessary for reliability

Teaser slide

® There's more I don't have time for:

— Our merge model 1s provably correct,
efficient, and also understandable by
USsers

— Ul for “peripheral vision”

— We're working on improving our trust
delegation — granting and revoking
permissions, also without dependence on
a central server

http://venge.net/monotone +
monotone

